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SUMMARY

This is the final volume in a series which represents the particle trajec-
tory analysis results from four experiments (DIPOLE WEST Shots 8, 9, 10 and 11)
carried out to obtain information on the interaction of spherical blast waves
with real and ideal reflecting surfaces. In each experiment, two 1080-pound
(490-kg) Pentolite charges were detonated simultaneously, For Shots 8 and 11,
the first charge was positioned at a height of 25 feet (7.6m) above the ground
surface, and the second charge 50 feet (15.2m) above the first. The corres-
ponding distances for Shots 9 and 10 were 15 feet (4.6m) and 30 feet (9.2 m).
For Shots 8 and 9, the ground surface was smooth, and for Shots 10 and 11, the
ground surface in the region close to the charges was roughened by plowing to
a depth of approximately 14 inches (35cm).

In each experiment, high-speed photographic records were made of the move-
ments of smoke-puff particle tracers in a region adjacent to the charges. The
observed trajectories of the particle tracers were analyzed to provide the fol-
lowing information: the trajectories of the primary and Mach stem shock fronts;
the variation of shock strength with distance; the particle velocity, density,
hydrostatic overpressure and dynamic pressure fields at specific times after
charge detonation; and time histories of these physical properties at fixed lo-
cations in the region of the smoke puff grid. The results for each of the four
experiments were reported in the preceding volumes of this series. 1In this vol-
ume, the results from the four experiments are compared. It is shown that there
is complete consistency in the trajectories of the primary shocks from all eight
explosions, indicating that each charge detonated satisfactorily and all yielded
identical amounts of energy.

Comparisons between the variation of Mach stem shock strength with distance
over the ground and along the interaction plane between the two charges show
that the shock strength over the rough ground was significantly less than that
at the interaction plane or over smooth ground. This is consistent with the re-
sults obtained previously from refractive image studies of the shock waves. The
measurements of the Mach stem blast waves above and below the interaction plane
provide a set of "ideal" values against which to compare results of blast wave
reflections from real ground surfaces. The results obtained from the particle
trajectory analysis include the variation of Mach stem shock strength with dis-
tance, and the space and time variations of particle velocity, density, hydro-
static overpressure and dynamic pressure.

Comparisons of the blast wave profiles in the ideal Mach stems for the two
heights of burst show little difference in the profiles at equal distances from
the ground zero axis., Comparisons between the profiles of the blast waves over
the ground and along the interaction plane show a consistent pattern in which
the value immediately behind the shock above the ground is less than at the in-
teraction plane, but in which at later times the values above the ground are
larger than those at the interaction plane. This effect may be due to a lack
of symmetry in the dipole experiments,
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SECTION 1

INTRODUCTION

1-1 DEFINITION OF EXPERIMENTS.

This volume presents the particle trajectory analysis results from
four experiments (DIPOLE WEST Shots 8, 9, 10 and 11), carried out to obtain in-
formation on the interaction of spherical blast waves with real and ideal reflec-
ting surfaces. A general description of the experiments and of the methods used
to analyze the photographically observed particle trajectories can be found in
Volume I of this series. The results of the particle trajectory analysis from
the four experiments, which were presented in Volumes I through IV, are compared

and summarized in the present volume.

In each experiment, two 1080-pound (490-kg) Pentolite charges were
detonated simultaneously. For Shots 8 and 11, the first charge was positioned
at a height of 25 feet (7.6m) above the ground surface, and the second charge
50 feet (15.2m) above the first. The corresponding distances for Shots 9 and
10 were 15 feet (4.6m) and 30 feet (9.2m). For Shots 8 and 9, the ground sur-
face was smooth, and for Shots 10 and 11, the ground surface in the reginn around

the charges was roughened by plowing, to a depth of approximately 14 inches (35cm).

In each experiment, photogrammetrical studies were made of the shock
fronts (refractive image analysis, RIA) and of the motions of smoke-puff particle
tracers (particle trajectory analysis, PTA). The refractive image analysis re-
sults were reported by Dewey et al (1975). In each of the preceding volumes of
this series, the following particle trajectory analysis results were presented:
the trajectories of the primary and Mach stem shock fronts as derived from par-
ticle trajectory time-of-arrival data, and the subsequently derived variation
of shock strength with distance in each case; contours showing the particle
velocity, density, hydrostatic overpressure, and dynamic pressure fields at
specific times after charge detonation; and time histories of these physical
properties at fixed locations in the region of the smoke puff grid. The results
described above from the four experiments are compared in the next two sections

of the present volume. A final section summarizes the comparisons and presents

conclusions.




METHOD OF COMPARISON.

To permit the comparison of the results from the four experimerts,
which were carried out in a variety of atmospheric conditions, the results of
each experiment were scaled to represent a pair of 1kg charges detonated in a
standard atmosphere of dry air at 15°C at sea level. The details of the scaling

procedure are given in the preceding volumes.

Results are presented in SI units, although the experiments were orig-
inally laid out in British units. Only distance and time measurements are af-
fected as velocity, density and pressure results are presented in dimensionless
ratios. A distance units conversion scale is included on page 4 to convert be-

tween SI units (meters scaled to a 1kg charge) and British units (feet scaled

L A I R AT . S e PR e

b to a l-pound charge), plus factors to convert distances and times to a 1000-pound

i‘ charge in a standard atmosphere, and factors to convert pressure ratios to both

T

British and SI pressure units. Scale factors which may be used to compute the

Y

distance and time values actually observed under the ambient conditions of each

shot are also provided.
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SECTION 2

SL¥ Y

& o

COMPARISON OF SHOCK FRONT STRENGTHS

5 GASH

2-1 PRIMARY SHOCK FRONTS.

The radius-time trajectories of the primary shock fronts from each of
the eight charges used in the four experiments—DIPOLE WEST Shots 8 through 11—
are shown in Figure 1. The time of arrival of each shock front at each smoke
puff was obtained from the high-speed films of the smoke puff movements to pro-

vide a series of values for shock radius and time. The agreement between the

results shown in Figure 1, especially in the slope of the trajectories, confirms

the uniformity of energy release in each of the eight original explosions.

For the upper charges used in these experiments, good primary shock-

front trajectory data were obtained, using only particle trajectory analysis

-,

since no data were available from the refractive image analysis and very few

!

from pressure gauge measurements. Because of the charge configurations used,

more data were obtained for the upper ch rges on Shots 9 and 10 than on Shots 8

and 11. On the other hand, fewer trajectory data were obtained for Shots 9 and

et -
e

10 for the primary shock fronts from the lower charges. The most complete set

of primary data (both PTA and RIA) was obtained for the lower ciarges on Shots 8§
and 11.

.‘ +. f,‘._.‘.”l .

The shock trajectory data shown in Figure 1 were analyzed to determine

the variation of shock strength with distance, in a manner described in Volume I

of this series. Results of this analysis for each of the eight primary shock

fronts werc presented separately in the earlier volumes. Like the shock trajec-

tory data presented in Figure 1, the shock strength results for each charge

showed good agrecment, except for the lower charges on Shots 9 and 10, where the

data were too few to permit a reliable analysis of the shock velocity. The pri-

’ mary shock strength results presented in the earlicr volumes also showed good

agreement with similar results obtained using refractive image analysis on the

opposite side of the charges.

Because of the agreement between the primary shock-front trajectory

data from all eight charges, the data were combined and analyzed together. The

v combined radius-time data-fit is shown in Figure 1 as a smooth curve. The vari-

ation with distance from the charge center of primary shock-front strength (in
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terms of shock Mach number), using the combined data shown in Figure 1, is given

in Figure 2. A separate scale gives the shock strength in terms of the overpres-

sure ratio across the shock front,

Also plotted in Figure 2 are points from the combined refractive image
analysis of Shots 8 through 11. These data were obtained by photographing the
shock fronts against a striped backdrop on the opposite side of the charges to
the smoke puffs. The RIA results for the four experiments were compared in de-
tail by Dewey et al (1975), and agreement between experiments was found to be

good.

2-2 MACH STEM SHOCKS ABOVE AND BELOW THE INTERACTION PLANE,

The dipole experiments were designed with the postulate that the Mach
stem shocks produced above and below the plane of symmetry between the two
charges would involve no loss or redistribution of energy, and would therefore
represent the reflection of a spherical shock from an ideal reflecting surface.
The radius-time trajectory data for the Mach stem shocks above and below the
interaction plane in Shots 8 and 11, obtained using particle trajectory analysis,
are plotted in Figure 3. Again, the results from the four shock fronts are very
similar, and these data were combined and analyzed together. The combined fit

is shown as a smooth curve in Figure 3.

Figure 4 shows the variation of shock strength with distance for the
four interaction Mach stems on Shots 8 and 11, computed using the combined par-
ticle trajectory analysis data in a manner similar to that described for the
primary shock fronts. Also shown is the variation of shock strength, computed
using the combined refractive image analysis data for the Mach stems below the
interaction plane, reported by Dewey et al (1975). No data were available above

the interaction plane from the refractive image analysis.

Agreement between the interaction Mach stem results for the two ex-
periments, and using the two measurement techniques, is good in spite of the
uncertainty about the shape of the Mach stem shocks, a problem discussed in
the earlier volumes. For refractive image analysis of the Mach stem shocks,
the shock positions were measurcd very close to the interaction plane, and dis-
tances were measured along the interaction plane from the point where the axis

joining the two charge centers cut the plane. 1In the smoke puff analysis,
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the positions of the shock front were measured at some distance above or below
S the interaction plane, and it was necessary to make an assumption about the
g‘g shape of the Mach stem shock. The most consistent results were obtained when
e : it was assumed that the Mach stem shocks were spherical and centered on the
point where the axis joining the two charge centers intersected the interac-

tion plane. Further study is required to justify this assumption, however.

A second uncertainty concerning the Mach stem shock data presented
in Figures 3 and 4 is the distance beyond which the data measured at the in-
teraction plane may be influenced by the ground Mach stem. The triple-point

trajectory above the ground surface rises to meet the triple point coming down

from the interaction plane, until the interaction Mach stem is met by the Mach
stem from the ground surface. The distance where the two Mach stems meet is
;i‘ approximately that shown by arrow "A'" in Figure 4. At distances greater than

that indicated by this arrow, the interaction Mach stem and the ground Mach

v

stem partly overlap to form a shock front which finally replaces the interac-
tion Mach stem below the interaction plane, at a distance approximately indi-

cated by arrow "B". Beyond the range indicated by arrow “B", the Mach stem

: o
PINC gagah

above the interaction plane is increasingly modified in this manner.

Results similar to those plotted in Figures 3 and 4 are plotted in

e

Figures 5 and 6 for the Mach stem shocks above and below the interaction plane

for Shots 9 and 10. Shot 9 RIA trajectory data for the Mach stem below the inter-
action plane were not included with the Shot 10 RIA data because of a slight but
significant displacement in time relative to the Shot 10 data, probably due to

. a small error in establishing time zero for one of the experiments (RIA only).
Such a difference in radius-time data does not affect strength-versus-radius

. results if the different radius-time data are not combined.

» The radii at which the interaction Mach stems become affected by the

ground Mach stem (as explained above) are marked in Figure 6 by arrows "A" and "B".

The particle trajectory analysis curves from Figures 2, 4 and 6 have

been plotted together in Figure 7 to provide a comparison of the Mach stem shock

strengths for the two heights of burst. Another comparison is shown in Figure 8,
in terms of reflection factors determined by calculating the cubes of the ratios

of the radii at which the Mach stem shock and primary shock were of the same

strength. These results are plotted versus the radius of the Mach stem measured

o 15
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from the point where the axis joining the two charge centers intersects the

interaction plane, i.e., the horizontal distance along the interaction plane.
(Mach stem reflection factors computed by some authors have been plotted against
the oblique radius from the charge center to the point where the Mach stem in-

tersects the ground.)

Reflection factors computed using the refractive image analysis re-
sults are also shown in Figure 8. While there is some agreement between the re-
sults of the methods of analysis for Shots 8 and 11 and Shot 9, the RIA results
for Shot 10 appear to be unusual. It should be pointed out again that all RIA
results were computed from measurements made very close to the reflecting plane,

whereas the PTA measurements were extended above and below the plane,

2-3 MACH STEM SHOCKS ABOVE THE GROUND

The dipole experiments were designed, in part, to compare the reflec-
tion of spherical blast waves by real and ideal surfaces. The charge configura-
tions were such that reflection of the primary wave from the lower charge at
the interaction plane was accompanied by a reflection of the samc wave from the

ground surface.

The RIA results (Dewey, et al, 1975), which were obtained by making
measurements about 0.5m above the ground, showed the Mach stem shocks over
rough ground (Shots 10 and 11) to be significantly weaker than the Mach shocks
at the interaction plane at the same radial distance. The shocks over the smooth
ground (Shots 8 and 9) were also weaker than the interaction shocks, but to a

much smaller extent.

The Mach stem shock strengths for Shots 8 and 11, obtained from the
smoke puff movements, are illustrated in Figure 9 but do not show the differences
observed using the refractive image analysis. Undoubtedly, this is due to the
fact that the shock front arrivals at the smoke puffs werc measured throughout
the Mach stem regions at distances up to 7.5m from the reflecting surfaces.

The results shown in Figure 9, therefore, indicate that the differences in Mach-
stem shock strength are extremely height-dependent, as might be expected. (A
variation of shock front strength with height above the ground surface implies
a deviation of the shape of the shock front from the spherical shape that has

been assumed in these calculations. The authors believe this problem justifies

further study.)
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The arrow labeled "A" in Figure 9 marks the approximate distance at

which the interaction Mach stem first begins to influence the ground Mach stem,

. A

in a manner described in the preceding section, and the arrow "B'" indicates a
V3 range in which this influence becomes complete. Beyond the distances indicated

by the second arrow, the shock which was first reflected below the interaction

o~ e

plane, and then re-reflected by the ground surface, has overtaken the original

ey

ground Mach stem, possibly reinforcing it.

The ground Mach stem results for Shots 9 and 10 were found to be sim-

ilar to those shown in Figure 9 for Shots 8 and 11.
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SECTION 3

18
[ ]

COMPARISON OF BLAST WAVE PROFILES

7

:ﬁ; 3-1 PARTICLE VELOCITY TIME-HISTORIES.

%

‘i- In the first four volumes of this series, time-histories of particle
&L velocity, density, hydrostatic overpressure and dynamic pressure were presented
8 for a number of fixed locations within the region of the smoke puff array. Of

all the physical properties derived from the high-speed photography of the smoke

"fr'r:.ﬁ“ﬂ"

puffs, the particle velocity within the blast waves is undoubtedly the most ac-

curately measured. Figure 10 shows the time variation of particle velocity cal-

V".:v

culated at four horizontal radii within the ideal Mach stem (IMS) regions for
Shots 8 and 11. The curves for the two experiments for positions at equal dis-

tances above and below the interaction plane and at the same radial distance

™.

from the axis joining the two charge centers are plotted together.

\

For each radial distance, the four curves are very similar, except
at the extreme right-hand side of the curves, where the curves for locations

above and below the interaction plane show differences which are probably sig-

Topu
+ . .

nificant, particularly at scaled radial distances of 4m and 5m. This is due

to lack of symmetry in the dipole experiment at later times, a matter which will

s

be discussed later in this report. Because of the similarity of the four curves
at each radial distance, it is appropriate to trace a single curve within the
family in order to simplify further comparisons. For example, the four curves
showing the variation of particle velocity at a radial distance of 4m are re-
plotted as Figure 11, together with a single curve drawn to represent the family,
and "error” bars to show the range of values being represented by the single

curve,

Similar results were obtained for Shots 9 and 10 at three radial posi-

tions, with even closer agreement between the curves from the two shots.

The median curves for Shots 8 and 11 are plotted with the correspond-
ing curves for Snots 9 and 10 for radial distances of 2.5 and 3m in Figure 12A.
In this figure, thc curves are plotted against real time, the time clapsed after
the detonation of the charges. In Figure 12B, the curves for the same two radial

o distances have been shifted in time to a common time of shock arrival. As can bhe
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Figure 12B. Particle velocity time-histories.
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seen, the curves for the two heights of burst are identical to the extent that

their ranges of uncertainty overlap.

In Figure 13, the median curves representing the particle velocity
time-histories at the four radial positions in the IMS region have been plotted
together with time-histories at the same radial distances in the region of the
Mach stem above the ground surface. In each case, while the particle velocity
immediately behind the ground Mach stem shock is sometimes lower than for the
interaction Mach stem, the particle velocity in the ground Mach stem at later
times becomes greater than that in the interaction Mach stem. This is a con-
sistent pattern which will be further demonstrated for the other physical par-

ameters described below.

3-2 HYDROSTATIC OVERPRESSURE TIME-HISTORIES.

The hydrostatic overpressure time-histories at four radial distances
in the Mach stem waves for Shots 8 and 11 are shown in Figure 14. Shown are the
median curves drawn between the four results above and below the interaction
plane for the two experiments, together with curves for points at the same radial

distance but in the Mach stem above the ground surface (the GMS region).

It will be recalled that hydrostatic overpressure is obtained from
the photographically measured particle trajectories by first determining the
density of each gas element defined by four smoke puffs and then applying an
equation of state to that gas element based on the entropy change introduced
by the passage of the first shock front to traverse the element. As pointed
out in the previous volumes, the determination of hydrostatic overpressure is
therefore not as accurate as the determination of particle velocity, and this
is demonstrated in Figure 14 by the longer error bars representing the scatter
of the results from the four positions. Despite the greater uncertainties,
the relative shapes of the profiles for the interaction and ground Mach stems
are similar to those for particle velocity, which is to say that at later times
in the profile, the hydrostatic overpressure in the ground Mach stem appears
to be higher than that for the Mach stem at the interaction plane. This con-
firms the observation of Dewey et al (1975), based on pressure profilcs deter-
mined from electronic transducers which indicated that in all experiments,

although the shock front pressure in the Mach stem above the ground was less
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g than that at the same radial distance in the Mach stem at the interaction plane,

the pressure impulses were consistently greater above the ground.

v
,
o avag—.

Similar results are shown in Figure 15 for Shots 9 and 10 at two radi-

2o

i al distances. .
B 3-3 DYNAMIC PRESSURE TIME-HISTORIES. f
g Dynamic pressure time-histories are shown for Shots 8 and 11 in Fig-

Fj ure 16, and for Shots 9 and 10 in Figure 17. Shown are curves with the error

F. bars representing the medians of four curves from the Mach stems above and below

E the interaction plane, and curves for the same radial distances in the ground ?5
b Mach stems. Again, the consistent pattern is seen of higher values of dynamic ')ﬂ

pressure in the shock wave above the ground at later times compared to those

at the interaction plane.

E‘ Care must be taken in drawing conclusions from the above results. In F'
:’ particular, it should not be concluded at this time that the extended duration if
;- of the time-histories in the Mach stem above the ground surface is due to the !
1 difference between a reflection from a real surface compared with a reflection '
% i from an ideal surface. The observed differences may be associated with a lack

of symmetry in the dipole experiments. This is illustrated in Figure 18, which

B

is a generalized impression of the shock patterns which might be expected from

o =

the dipole explosions, with charges spaced as for Shots 8 and 11. Consider the ¢

two reflected shocks between the upper and lower triple-point trajectories for -
the lower charge. These shocks intersect along a horizontal line through the 1 3
lower charge. After passing the intersection point of the triple-point trajec-

tories '"A", the reflected shocks will continue onward, and the downward-facing

reflected shock will again reflect from the ground surface and might eventually

be expected to form a second Mach stem, starting at "B'', as shown in Figure 18.

However, a corresponding reflection cannot occur at the interaction
plane for the original upward-facing reflected shock. Such a re-reflection
would require a matching shock, approaching from above the interaction plane,
and one does not exist. The radial distances at which time-history profiles

were shown in Figures 10 through 17 (for Shots 8 and 11) are marked in Figure 18,

V‘Aw SRS NP N

and it can be seen that, especially at the 5m radial positions, differences

‘\

might be expected in the profiles of the Mach stem waves above the ground and
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Figure 16B. Dynamic pressure time-histories.

37

5.0

0.50
0.4s
0.40
0.3S
D.30
0.25
0.20
0.15
0.10
0.05
0.00
0.0S
D0.10

0.30

0.0sS

0.10

e o et




-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

2. \AARAAR] LA AR AAARERASREAA AR N LA SR R EE L AN R AR A LS AERL SR RN AN RSN A NE REAL RS RN
3 b | I 1 W | | ] |

T HORIZONTAL RADIUS= 2.5 M

16T 9 AND 10 INS HEDIAN
———3HOT 9 CM3, NEICHY 0.3 W
"""" JIHBT 10 GMN3, NEZIGHT 0.9 M

n
o

1.5 1.5

1.0 1.0

it S e

o

& 0.5 0.s

@

Wl

S )

T I

2 0.0 t——F 1 0.0

Wl

[ =4

Q.

e ®

ll‘l'llll'lll"llI'll"l"'l"'Tlllr"l"_rT'lrr"
lllllllllllllllllllllj,lilllllllLLLlLJlJllllLlj_l

- _0 5 u_llllllllljjlllulllllllj_l_ll‘llllllljlllllLlLullllllllljllll_llllLlJ‘lj_lllllll _0.5 :
-1.0 -0.8 0.0 O.5 1.0 1.5 2.0 2.5 3.0 1
K TIME AFTER 3HBCK ARARIVAL (MS, SCALED) }
? &
2 1.0 -0.§ 0.0 0.5 1.0 1.8 2.0 2.5 3.0 1
f’ 1.5:..."..",.... ..... T LAAAMAMAAM MAMMAAAAM AAMAAAAM) MAMMMAAAM MdAMASA" 1.5 i
g s HBRIZANTAL RADIUS= 3.0 M ] ‘
) ' 3BT 3 AND 10 I NEDIAN ]
I~ ~ —~=3MO7T 9 GM3, NEIGHY 0.3 N - :
- T e SHBT 10 CH3. MEIGHT 0.3 W . g
1.0F J 1.0 ;
: ] ;
E i ¢
; % |
o 0.5 4 0.5 é
< 5 . ‘
- « F ; é
’ w [ h !
S o.o0f —===t——J 0.0 ¢
w - = i

« . ]

[- - -

_o 5:‘_Lllll_Llllllllllll‘l“ll“‘l.'.‘ll‘_L‘lllj_L“‘_“_lll‘L‘lljlhllll‘lllulll“‘ll‘l:_0.5

~1.0 ~-0.s g.0 ag.s 1.0 1.5 2.0 2.5 3.0
v TIME AFTER 3HOCK ARRIVAL (M3, SCRLEOD)

Figure 17, Dynamic pressure time-histories,
38

PRI ORI PR IR A T T




*dew uoTieandruod juoxy Mooyg ‘g oandty

(Q37638 "Wl 3INULSIO TULINDZIUBH
§°9 09 S°S DS S°h O'h S€ Q'€ S°2 02 S 01 S'0 00 S°0-

m10‘n qd-dq-—--—:qdﬂ—--ad--—---:q-—u----—-d--~<—-:::-—-‘¢u-jn-—-J—d-:d‘d—-d‘--—ujqﬂﬂ---qdd‘-da-,ﬂ-—q----J—q_|3--Mmlol
3 Smeme e SHULIVES AN LS SR 3
. WI e « ) ﬂ ) ' ﬁ.. . wa*V Im.. .
0°0 = \W./ $ o - = ....O 0 ..M
3 | o . - 3 g
m e //,/ 3 .||.._..
50 fF A AN . : 350 o
E | N ~ 3 >
3 : 3 ~
3 7 P E
01 = / ..v.,/ O mo.a o
E /S . - / 3 n
g s . 3 -
s-1 E - 3o, 2 g
Z o 7 7 . ~ - E m
m e 1:“_/1 e D= L 3 -
- P N — 3 . x
02 m. ® ™ L L 4 -7 .mo c -
- 4 L~ ¢ m o
3 AN \ - .. %
5'e b : - 44%°¢ r
3 J - . 3 m
3 ~ T \ 3 o
F / . - R AN O 3 =
o5 B \ p ., e
mlm " --b-[——l-bl-h\-:—-———Pnan-———-——b-hh—---——h-—----F-rbnnnnhn——ht-hnhn_—---b.-—thhh\—hb-—::;:-—y—P---—-—-:-nnhn‘h.—-:MMIm
£ $°9 D9 5°S 0°S S°h O'h S€E€ D' S22 D2 S°1 01 S0 O0°'0 S°O-
»
N *




below the interaction plane. It is hoped that this question will be resclved
in the future, following the analysis of the particle trajectories within Mach

stem shocks produced by single explosions above the ground surface.

3-4 SURFACE CONTOURS.

In the four previous volumes of this series, the measurements of par-
ticle velocity, density, hydrostatic overpressure and dynamic pressure were also
presented in the form of contours which mapped the appropriate physical property
at fixed times after the detonation. On first inspection, it appears difficult
to interpret these contours, some of which appear to be almost random in form.
Nevertheless, when the contours from similar experiments are compared, there

appears to be a high degree of repeatability in the results.

This is illustrated in Figure 19, in which the isotachs, namely, the
contours joining points of equal particle velocity, are shown superposed for
Shots 8 and 11 at scaled times of 2.5ms, 4ms, and 9ms after detonation. A
high degree of similarity in the two sets of contours can be seen, and this

suggests that the plotting of experimentally measured contours is a valid method

for comparing the flow fields from different experiments.
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Figure 19. Particle velocity contour maps.
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2 CHAPTER 4

CONCLUSIONS

B - 3

s Comparisons between the results obtained from the four dipole experi-

"

ments presented in this report demonstrate complete consistency in the trajec-
- tories of the primary shocks from all eight explosions, indicating that they

all detonated satisfactorily with equal energy yields. It should be stressed

o i i

that this consistency is only apparent after the initial measurements have been
scaled to allow for different atmospheric conditions. Even greater consistency
after scaling might have been achieved if the exact masses of the individual
charges had been known.

The measurements of the Mach stem blast waves above and below the in-

{3 teraction plane provide a set of "ideal" values against which to compare results
- of blast wave reflections from real ground surfaces. The 'ideal" results should
X be of particular value for comparison with blast wave predictions made using
;} numerical models, which normally assume shock reflections without energy loss

'f or redistribution.

5

Al

nj“

The results obtained from the particle trajectory analysis include

the variation of Mach stem shock strength with distance, and the space and time

jr

variations of particle velocity, density, hydrostatic overpressure and dynamic
pressure. Other physical properties within the blast waves such as entropy,

temperature, sound speed and local Mach number can be provided if required.

The blast wave profiles in the ideal Mach stems at equal distances
from the central axis for the two heights of burst are very similar, especially
at larger distances.

The observed differences between the Mach stem shock strengths above
the ground and at the interaction plane are similar to, but not as large as,
those observed using refractive-image analysis. This implies both a height de-
pendence and a variation in the shape of the Mach stem shock, and justifies

further analysis.

Comparisons between the profiles of the blast waves over the ground

v and along the interaction plane show a consistent pattern in which the value
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! immediately behind the shock above the ground is normally less than at the in-
. teraction plane, but at later times the values above the ground are always
larger than those at the interaction plane. This effect may be due to a lack

A of symmetry in the dipole experiments and not to ground surface effects. Anal-

e

ysis of the particle trajectories in blast waves from single air-burst charges

e

should permit resolution of this point in the future.
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